VRSpace - Distributed Reality

Table Of Contens:

2Abstract

2Keywords

31. Introduction

42. Background & Philosophy

83. Technology

83.1. AliceBot

83.2. NeuroGrid

93.3. JXTA

93.4. JPos

93.5. JBoss

93.6. James

103.7. Multimedia

103.8. VRSpace

103.9. Design Guidelines

113.10. Implementation

113.10.1. VRSpace Plugin Schema

123.10.2. VRObject Class Diagram

143.10.3. VRSpace Server Class Diagram

163.10.4. VRSpace Server Distribution

173.10.5. Client's Scene Distribution

183.10.6. Request Processing

194. Possible applications

195. Conclusion

20Short VR Glossary

Abstract

VRSpace is virtual reality toolkit providing both users and developers with intuitive way (3d, natural language) of collaboration and interaction with/within distributed environment.
VRSpace is also the framework enabling plugins to communicate with each other and user via a general event model. It is based on a number of recognized industry standards (J2EE, JXTA, SQL, XML, ISO 8583, ISO 14772,) thus providing clients with numerous advanced and unique features, including:

· distributed search (NeuroGrid)

· AI module: natural language processing & context analysis (AliceBot)

· P2P environment (JXTA)

· web server, remote administration, logging, persistence, etc. (JBoss - J2EE application server)

· secure transactions (JPOS)

· standard internet servers (pop3, smtp, nntp) set (James)

· server side scripting (Jython, AliceBot)

In our paper, we provide details about the technology and its usage.

Keywords
virtual reality, software agents, distributed computing, asynchronous messaging

1. Introduction
What is virtual reality? Let's see what Encyclopaedia Britannica says on this topic:

virtual reality (VR), the use of computer modelling and simulation to enable a person to interact with an artificial three-dimensional visual or other sensory environment. VR applications immerse the user in a computer-generated environment that simulates reality through the use of interactive devices, which send and receive information and are worn as goggles, headsets, gloves, or body suits. In a typical VR format, a user wearing a helmet with a stereoscopic screen for each eye views animated images of a simulated environment. The illusion of being there (telepresence) is effected by motion sensors that pick up the user's movements and adjust the view on the screens accordingly, usually in real time (the actual time during which something takes place). Thus, a user can tour a simulated suite of rooms, experiencing changing viewpoints and perspectives convincingly related to his own head turnings and steps. Wearing data-gloves equipped with force-feedback devices that provide the sensation of touch, the user can even pick up and manipulate objects that he sees in the virtual environment. The term virtual reality is also applied to the branch of computer science concerned with the development of such systems.

(Copyright © 1994-2000 Encyclopaedia Britannica, Inc.)

As we see, the usual definition describes VR as deceiving of our perception, mostly by deceiving our senses (data gloves, headsets etc.) with the purpose to make a user to see no difference between the real and virtual world. However, according to various SF writers, virtual worlds should be places where we can do everything we can do in the real world but more efficiently and more quickly with no limitations imposed upon us by the physical world:

...if virtual worlds are merely ideal versions of our own world, why bother? The reason for opening up these spaces is to alleviate real world problems. We hope to break the bonds of time and space, making it easier to cope with the huge volumes of information brought about through widespread use of computers and the new information age.

(Computer-Mediated Communication Magazine / Volume 2, Number 2 / February 1, 1995 / Page 3, Talk to My Agent: Software Agents in Virtual Reality by John Horberg (horbej@rpi.edu))

The real meaning of the expression “like in the real world” is limited by physical laws: if we chat with someone at the other end of the world, the time dilatation of half a second will not bother us but fighter plain in dog fight or sword duel is unachievable, and tele-surgery probably would be fatal.
Nevertheless, what is common both to virtual and real reality is the “intuitive organization of data”. How many times has it happened to you that you can’t remember where you put some file or a link? What do you do in the real world when you don’t remember where you put something - you ask your family, colleagues, friends, or you search the house? Simply, man is born with specialized centers in the brain for speech and coordination in space, and reading has to be learned for years.
Here we designated the most important goals of VRSpace project: intuitive organization and intuitive data search, by the most natural (spatial and vocal) ways. Other goals are mostly technical, and dictate what we can do in and with virtual worlds. That can already be done partially on the internet, and cyberpunk writers have already given us excellent background how it should look like. In short, the requirements are:
· on-line messaging (aka chat, aka instant messaging)

· off-line messaging (mail, news...)

· security
· privacy
· distributed content
In this paper we are going to describe how it can be done with contemporary software.

2. Background & Philosophy

In Gibson's and Stephenson's novels we can even find practical instructions for authors of virtual worlds, for example:

· There are no collisions of avatars on the streets. Naturally - why would they? But, the exclusion of collision is the direct saving of processor time.

· There are no shadows on the streets for the same reason.
· Height of avatars is limited. That way we make the designers' job easier (doors, cars and movements).

· Limited speed. There is limited speed of data transfer in virtual worlds, as in the real world, or more precisely maximal bandwidth. But in virtual worlds teleportation is possible.

And so on...

Some of these requirements were approved and became a part of the ISO/IEC 14772 (VRML 97) specification, and in recommendation of working groups of Web 3D consortium. VRSpace server relies upon recommendation of the Living Worlds working group of Web 3D consortium and also relies on available open-source software.
One of the important requirements, albeit only implicated in SF novels, is portability: cyberspace works on Ono-Sendai consoles same as on the consoles of other manufacturers, but it looks better on better consoles (from Gibson’s Neuromancer novel). VRSpace literary implements this: bigger frame rate means more objects in user's scene. Maximal number of objects and physical size of the scene (horizon distance) are parameters of every server. Size of every user's scene directly affects the load of a server, and we change the size of the scene we must make the load balancing of the server and client. Experimental VRML client does some other optimisation tricks, namely it adds fog on graphically weaker computers and draws semi-transparent cubes until the geometry is downloaded (once we download the geometry it stays in standard browser cache).
However, more important component of virtual worlds are software agents, e.g. Gibson's constructs Flatline and Finn, of Pohl's Von Shrink and Einstein. Each of them is a specialized advisor: Einstein for science, Flatline for cyberspace, etc. According to the author's opinion their basic characteristics are adaptability and understanding of human speech. Human speech is implemented by AliceBot, and adaptivity by NeuroGrid. By custom <vrspace> AIML tag, AliceBot is capable (for example if it doesn't know the answer, Catchall category in AIML terminology) of starting the distributed search. NeuroGrid will return a list of URLs whose content is determined by user's preferences and neighbours' advices. URL can be anything, even some web application. But if the returned URL points to AIML file, AliceBot is also capable of learning new language categories.
What can these robots do? We have to consider that computers don't have “senses” like people do. If we define “senses” as input/output communication channels of a closed system, computers have, beside “senses” for keyboard, sound and picture, ‘senses” for pop3, smtp and other network protocols. In Java implementation a robot has all “senses” that are available to Java Virtual Machine. VRSpace server gives to robots a “sense” for space, and sensors when they need them: ProximitySensor, ObserverSensor, etc. That is, it gives them all capabilities it gives to a user, at the same time considering privileges and ownership, so by default a robot can’t change properties of any object except itself. But if a user gives to a robot the ownership of his confidential data, it is his responsibility to teach and maintain his robot because in p2p environment, some of the confidential hosts could teach robots how to give away that data (for example credit card numbers), to format hard disks and other similar unwanted activities. Regardless of your and your robot’s trust in your friends and trusted hosts, a successful break in on your DNS can make your robot to execute code you don’t want it to execute. It is our opinion that not only DNS but any kind of hierarchical systems are inertly insecure because the corruption of any element in the hierarchy gives the opportunity for corruption of every dependent items of the hierarchy. We suppose that trust systems like NeuroGrid and Reptile (http://reptile.openprivacy.org/) can decrease distribution of corruption, but it remains to be seen in practice. In any case, it is one of concepts that is easier to test in virtual than in the real world.
Another attribute of SF cyberspace can be described as “upload to the net”. It is important to say that http or ftp upload is not the upload to the net, but to the strictly defined network location. If that location for any reason stops to publish certain content, than it is not available online anymore. Upload to cyberspace should secure that information stays there forever. The nearest to this idea we can get today are search engines like Google, with its archives of news, mailing lists and web pages. But “the final solution” are p2p networks: you just save a document in the public directory on your disk and that’s it. Distribution and redundancy of information depend upon the interest of other participants in the network. In p2p network data come to life - populations of documents can be described by the genetic algorithm whose fitness function is given by the end users. For example both mail and news are p2p applications: when you send us an email your mail server contacts out mail server and mail is replicated to all who are interested in it. Mail now waits on disk to be read, deleted or put into archive. In this case, fitness function is directly implemented by a user, and he decides whether he will delete it or put it in archive. Various p2p systems implement different modifications of user’s decisions, so in fitness function they can take into account another conditions, for example average time of reach of the original document. But, beside distribution they take care of searching of distributed information. In VRSpace we don’t take into consideration ways of reaching the data, because it distributes URLs, not documents.
Quality virtual worlds contain a lot of geometry and multimedia. The price of a server on the internet directly depends on the bandwidth, and p2p is the cheapest way of distribution: a user can get data from any node that has it on disk, from any user that has seen it. For that reason VRSpace uses JXTA content management system. We plan to closer integrate with JXTA and better access to JXTA services, in the purpose of complete removal of hierarchy from the system.
Now we must mention the delicate question of copyrights and copying in cyberspace. Our software has been published under the GNU General Public Licence, meaning that you can do what you want with it, until you publish source code of all changes that you have made. We think it’s the perfect licence for p2p networking, with emphasis on sharing and cooperation instead of on restriction and competition, what can be seen from the following example:

Ipsos-Reid market research company reported in June that 81 percent of music downloaders buy as many or more CDs than they did before they started getting tunes from the Internet.

(You can read the whole article online at http://slate.msn.com/?id=2069732)
Anyway, in VRSpace it is possible to charge for every request by implementation of ISO 8553 protocol through the JPos - the same one that is possibly in your bank machine. Basic idea is to enable developers and world builders to make direct transactions with credit cards, with purpose of direct money transactions between users and authors. Accordingly, virtual worlds don’t need salesmen: author can charge his work the same moment a user sees it, hears it or according to some other criteria (for example monthly subscription in some internet community). Role of a salesman e.g. link between author and user in virtual world takes over its network infrastructure. Any specific implementation in VRSpace still doesn’t exist - possibility of financial transactions needs contracts with financial institutions - but JPos is a tool which is checked in 56 countries, so we can freely recommend to virtual banks.
Here we have another delicate problem: how to tax that transactions. To many governments’ regret, users don’t care (and usually even don’t know) if the host where transaction is done is located in Croatia or in Zimbabwe. In cyberspace we usually trade with things which actually don’t exist - banners, files, codes, telephone impulses, etc. No Big Brother system, no matter how sophisticated it can be can’t control the cyberspace - the only control happens between users, the only efficient censorship is self-censorship. At any rate, avoiding of control and censorship is an important motif for the creation of cyberspace:
We are creating a world that all may enter without privilege or prejudice accorded by race, economic power, military force, or station of birth. We are creating a world where anyone, anywhere may express his or her beliefs, no matter how singular, without fear of being coerced into silence or conformity. Your legal concepts of property, expression, identity, movement, and context do not apply to us. They are all based on matter, and there is no matter here.

...

In our world, whatever the human mind may create can be reproduced and distributed infinitely at no cost.

...

We will create a civilization of the Mind in Cyberspace. May it be more humane and fair than the world your governments have made before.

(A Declaration of the Independence of Cyberspace by John Perry Barlow <barlow@eff.org> http://www.eff.org/~barlow/Declaration-Final.html)

The real reality is considerably distributed: we have a piece of reality here, and a piece there. When we move through the space we perceive new objects, while other objects leave our perception. But we don’t forget those objects - next time we come to the same place we will perceive the same objects, maybe even some new objects added lately, and some objects will be gone. VRSpace works in the precisely same way: as the client moves, incrementally loads new objects while unnecessary objects are deleted from the scene, but remain in the cache. In similar terms, VRSpace is a distributed database/filesystem, that is to say distributed content management system.

All of our actions - movement, speech, mimic - is a group of events in space. The space itself takes care about the mode of delivery of the message about an event to all observers, using for example light or sound waves. Observers do not receive a message about an event at the same time, nor they know when the event happened, nor the group of events that we can perceive defined in advance, we are not even capable to perceive or explain majority of events that are happening to us.
What is the meaning of this for VRSpace? Clients are observers, and all other objects, including clients are observable, thus realizing general event model.
Time dimension doesn’t exist (inside VR) for a number of reasons. Let’s mention some of them:

· man doesn’t possess the particular sense for time, and we don’t know how the subjective perception of time really functions
· the meaning of timestamp in distributed asynchronous environment is relatively irrelevant, and it significantly increase the net traffic
In this respect, VRSpace is asynchronous messaging system.

If we close our eyes or shut our ears, we stop to perceive certain classes of events, that is to say, we filter objects and events. Much more complex filtering happens in human brain: neuron networks in cascade filter senses, separate relevant from the irrelevant, add or subtract details, which leads to generalization of perceived objects and events. The scene of every client contains cascade of filters and every perceived object is filtered, in a way that every filter can delete an object from the scene, or change object’s attributes. Thus we can filter individual users, objects and classes of objects, with or without subclasses. Filtering of events is not implemented, mainly because of performance reasons.

Considering all this, VRSpace emulates the perception, as in this example:
…And the default in this kind of store is usually ‘alone with the merchandise’. If we want, we can see any other customers who themselves choose to be seen. And if we want, we could be visited by a shop assistant immediately. Or, if we hover around long enough, one will eventually appear anyway, just to help us toward a decision… (T. Williams: Otherland vol. I)
[Notes: while other senses are relatively well studied and are the subject of perpetual research, there is no scientific consensus on perception. Terms like perception and senses are frequently considered as synonyms, it is not even clear if the perception is physically distributed in the brain or it occurs in brain waves (McFadden). Although many mystics and researchers of mind altering substances can say a lot about perception (Huxley), it is impossible to use their research for this project. This implementation has been inspired by teachings of Ki Society (http://www.ki-society.org).]
3. Technology
3.1. AliceBot

Some fifty years ago, Alan Turing presented his remarkable artificial intelligence ‘test’: when chatting with the computer, can you guess are you talking to a man or a machine. Some ten years ago, Hugh Gene Loebner initialized annual competition and since then, the Loebner Prize for artificial intelligence became the equivalent of a Nobel Prize for humans.
A.L.I.C.E (Artificial Linguistic Internet Computer Entity) won this prize twice. You can already chat with John Lennon’s and Elvis’s’ constructs and some other invented characters.
Previous researches and applications proved that robots have many difficulties in learning from humans, and other systems in which robots could learn from each other are being researched tested. Robots are ‘programmed’ in the variety of XML. The most common critical remark to this technology is that BotMaster has to predict the conversation flow, but developers usually start writing simple scripts and improve them by analyzing chat logs.
Software state of the art: referent java implementation stable, API unstable, rapid development, AIML (Artificial Intelligence Markup Language) stable.
http://www.alicebot.org/
3.2. NeuroGrid

How do you usually search the internet? You don’t. You just search the database of your favourite search engine.

NeuroGrid is self-adaptive system of document management based on keywords and reputation. System learns through interaction between users and documents, other users and hosts. Quality of the search is being evaluated implicitly, by clicking on the link, or explicitly, by writing down evaluation of each document/host. That kind of system can be also used for management of local documents, but it shows its full power in the distributed net search because it functions as a group of friends chatting about a certain topic.
Software state of the art: alpha development.

http://www.neurogrid.net/
3.3. JXTA

Have you noticed words like ‘server’, PC, operating system in cyberpunk novels? Authors haven’t. Net is a group of connected devices that share common data. People connect to the Net through “consoles”, which convert data into shape acceptable to people, but all devices use the same data, even programs.

JXTA is platform-independent group of open protocols that enable devices p2p communication: finding peers, services and files. But in distinction from traditional hierarchical and client-server systems (DNS, Web Services...), in this system peer asks for a service from the peer group and not from the single server/cluster. In other words, that means that you will get your data/services even when hackers crash root-servers.net. System is designed to run on anything, from mobile phones to mainframes, and it is available for several programming languages. In distinction from already known p2p systems in which the emphasis is on data sharing, here the CMS (Content Management System) is less important, and emphasis is on advertising, finding and access to services. In short, it’s SOAP, UDDI and Gnutella in one.
Software state of the art: referent java implementation stable, API stable, quality of other implementation unknown to authors.

http://www.jxta.org/
3.4. JPos

In temporary business world programmers and all internet related professions, run their business over the Net, and are being paid over the Net.

JPos is open-source implementation of ISO 8583/ANSI X9.2 protocol. This protocol is a standard for financial transactions on practically everything, from bank machine to internet. Also, JPos gives level of abstraction that distinguishes business logic from protocol details.

Software state of the art: production quality.

http://www.jpos.org/
3.5. JBoss

VR is much more useful with various applications, and today there are thousands of applications working on J2EE platform. Those applications can be run and administered over the Jboss, the most popular java application server, which in a moment of writing this paper has over 150.000 downloads per month.
Implementing Jboss in VRSpace all those applications become available to users of VRSpace.
Software state of the art: production quality.
http://www.jboss.org/
3.6. James

E-mail is the inevitable part of net collaboration.

James (Java Apache Mail Enterprise Server) is java mail/news server, based on open protocols (POP3,SMTP,NNTP).

Software state of the art: stable/experimental, API unstable.

http://jakarta.apache.org/james/
3.7. Multimedia

In VRSpace project the emphasis is not on multimedia - VRSpace distributes URLs and leaves the interpretation to clients. We will list only basic tools for implementation of java client:

· Java Media Foundation, which supports a number of audio and video formats
· Java 3D API, standard platform-independent API, hardware optimized (for now) for windows, linux and solaris platforms.
· XJ3D, referential X3D browser by Web3d consortium

· Java Speech API, which we experimentally integrated with AliceBot, and put on hold due to deficiency of open-source speech grammar.
VRML specification and browsers very well support various multimedia formats, and even some VR goggles.
3.8. VRSpace

... or putting it altogether.

VRSpace gives to cyberspace a 3D show - to users and applications as well. It also functions as asynchronous messaging system, and enables users, objects and applications to communicate among themselves, takes care of the world persistence and state of all objects. It can function as client-server application or stand alone server application. It has been projected to be maximally flexible on purpose, so adding a new application in space is reduced to extending one class, and protocol is created with the intention to enable that on the client side can be anything that can open socket - even telnet or shell script.
3.9. Design Guidelines

Maximum flexibility mostly excludes direct connections, so VRSpace server knows very little about applications that run in its space. Besides, this enhances the performance of the system and developer’s learning speed.
Main goals of design:

· Cross-platform - we want to enable a user to choose the best hardware and OS.
· Modular - VRSpace has been designed with the purpose of adding anything in space. That’s why we have chosen the most general event model - observer. We want to enable a developer to expand possibilities of space in the easiest way, so we have chosen Command pattern. Also we wanted to ease persistence of objects to the developer, so we have chosen the object DB model with general interface and simple conventions.
· Multiuser - new dimension of collaboration.
Also, everything that works on-line must work off-line as well, that’s why we emphasised intensive caching of content and classes.

3.10. Implementation
3.10.1. VRSpace Plugin Schema

[image: image1.jpg]Web Server

NeuroGrid

Web Search
Engine (Google...)

Net

VR Application Server

Mail
Server

News
Server

I1SO 8583

Picture proposes “Duncan” - the ultimate VR Application Server.

VRSpace Server takes care of user authentication, maintenance of the scene, distribution of events to users, permanent storage, and in short, everything except presentation.

Client is responsible for data presentation and interaction with user. This is accomplished by connecting to the VR Application Server and reacting to the messages received by server.

Various plugins (JBoss, ALICE, NeuroGrid...) extend appropriate subclass of VRObject and thus add new features to VR Application Server. Architecture is designed in a way that adding new plugins is simple as much as possible.

3.10.2. VRObject Class Diagram

[image: image2.jpg]

VRObject - Generic VRObject class. It extends Observable interface and notifies observers of any state changes. All changes are encapsulated inside Request object. Objects of subclasses of this class can't store state changes to DB and can't change its fields values, just exist in memory while Server is up and store those changes at Checkpoint time or when admin shutdown the Server.

DBObject - This class defines methods for database storage. Objects of subclasses of this class can be stored in underlying DB and set their fields’ values. When processing a Request, objects first store changes in DB and then distribute Request.

There are 4 main types of VRObject and DBObject:

	Type Of Object
	Send
	Receive
	Description
	Example

	Passive
	Can't send events
	Can't receive events
	This class is used for objects within the world that cannot be changed
	landscape

	Public
	send events to anybody
	receive events from anybody
	General public object
	unlocked door

	Private
	does not send events
	receive events from anybody
	This class is used to trigger some events within the world, to collect statistics, etc.
	Camera (Logger)

	Owned
	send events to anybody
	receives events from owners
	Check ownership before processing
	James, ALICE

Clients are observers, and monitor VRObjects state changes.

Ownership is implemented by implementing Owner and Owned interface. Objects can be the owner and the owned at the same time, but ownership is not delegated: if object O1 is owner of object O2, and object O2 is owner of object O3, object O1 is not owner of object O3.

Classes that implement Owner interface:

· Client

· Robot

Classes that implement Owned interface:

· OwnedDBObject

· OwnedVRObject

· ObserverSensor

· Proximitysensor

· Robot

3.10.3. VRSpace Server Class Diagram

[image: image3.jpg]*
2 s

H‘li

The Main server class, Server, looks up the configuration, connects to the database, and starts listening to a network socket. It should also start some daemons (services).
When something connects, it starts new Session. Session sends "login;" and reads response, than sends "password;" and reads the response.

Then, it asks the Dispatcher for Client with this login and user name. If Dispatcher returns the client, session starts. Now, this Dispatcher thing is big deal. It is responsible for client login and logout, data retrieval from the database, and dispatching of events - all the main server functionality. Dispatcher.login () looks for AuthInfo object having the appropriate login and password. If it does not exist, and vrspace.user.autocreate property is true, it will create new AuthInfo, and a new client object of class specified by vrspace.user.class property.

Authentication fails if:

· vrspace.user.autocreate is false and no AuthInfo has specified login

· AuthInfo with login exists but password is wrong

· client is already logged in and daemon parameter to login method is false

Daemon logins and sessions are intended for file transfer and other session types which are not interested in state of the world. When authentication passes, Dispatcher constructs new Scene for the client (if daemon is true, Scene is not constructed). Scene looks up the database, adding interesting object to the client's view (by calling Client.addObject(VRObject)) and removing object of no interest from the Client's view. This implementation uses client's current coordinates within the space to determine which objects are of interest.

Persistence implementation - database description:

The task of persistence layer is to store all VRSpace objects (objects of VRObject class and all subclasses of it) into database. This is accomplished through abstract DB class which serves as database interface. Storing and retrieving objects is simple through DB.put(Object) and DB.get(ObjectID) methods (actually DB has several put/get methods for various updates/queries). Database implementation is based on already known object-relational mapping (http://www.object-relational.com), but the main difference from existing solutions is that there’s no need to write any code (scripts, templates…) for new type of objects. When database determines object of new type, it processes class of that object in run-time, and creates all necessary updates. What is also accomplished is easiness of writing new DB adapters: all that a developer has to do is to subclass SQLDB class and write some constants and simple SQL queries.
Filters description:

	Filter Name
	Description

	ActiveClientFilter
	Returns true if Client is on-line.

	ActiveOrOwnedTransformFilter
	Test if Transform is active or Client owns it.

	AdminFilter
	Changes URL's to provide extra info to administrator.

	ClassFilter
	Filtering by class name. Filters out instances of this class. Note that package name is ignored, and also does not care of inheritance.

	OwnedTransformFilter
	Test if Client owns this Transform.

	SubclassFilter
	Filtering by class name.

Filters out instances of this class.

	TransformFilter
	Used to filter out Transforms in Scene.

	VRObjectFilter
	VRObject filters are used to eliminate objects not needed in the Scene. In order to allow the Scene to add and remove filters properly, filters must implement equals () method.

3.10.4. VRSpace Server Distribution

[image: image4.jpg]Server 1

Server 4

Server 2

· every Server contains some space (objects, information...)

· Server can have a part of the space that is already contained in some other Server
· space between servers doesn’t have to be continuous e.g. there can be areas that don’t exist on any server
· while moving through the space Client will change Server if he moves from area of space contained in one Server to area of space contained in another Server (this is transparent for a Client)

· Client can also enter in Gate object which serves as “teleport”, so he can “teleport” himself into some other Gate which can be on the same or some other Server
· every Client can also be a Server - in that case Server creates its own space by creating cache of objects that Client sees by moving through the space
· that way we can say that in p2p environment the difference between Client and Server cannot be clearly distinguished - it’s just a point of view

3.10.5. Client's Scene Distribution

[image: image5.jpg]Memory

VRSpace Server

'Y

QMAW

· every "real" user is represented by Client object (or any object whose class is subclass of Client class) in VRSpace

· every Client has his Scene e.g. part of space that he can see. Size of Scene depends on Client and Server properties

· Client as observer observes all objects inside his Scene
· if some object enters/exits from some Client’s Scene (because Client is moving), Dispatcher takes care to add/remove that Client as observer for that object

· because Scenes for different Clients can be of different size, there are possible situations that the first Client can see objects from the second Client’s Scene, but not the second Client himself or that the first Client can see the second Client, but the second Client can’t see the first

3.10.6. Request Processing

[image: image6.jpg]

Session accepts a request from a user (1), creates the Request object and calls client.request() method (2). Client asks the Scene for VRObject that is embedded in Request (3) and propagate Request to Dispatcher (4). If VRObject is null it means that it’s not in client’s Scene, so Dispatcher gets it from DB (5), and calls VRObject.sendEvent() method (6). VRObject.sendEvent () method tries to set its value according to Request and to notify registered Observers that it has changed (7). Those Observers are other Clients that propagate changes to their Sessions (8), and Sessions to users (9).

4. Possible applications
Possible applications: multi-user games, on-line education, simulations, virtual communities, teledirection of robots over the internet... just about everything from industry to entertainment depending on your imagination, skills and interests. In example: a software agent will read your e-mail, newsgroups, favourite web sites, recognize which messages/articles you are interested in, and discards those that you do not want to read. Such agents can buy data, products, and services on your behalf, even anonymously.

If you lack imagination we suggest reading any of below listed SF novels.
5. Conclusion

VRSpace is not the one and only asynchronous event distribution & 3d streaming system, AliceBot is the not one and only chatbot, JBoss is not the one and only application server, NeuroGrid is not the one and only distributed search engine, JXTA is not the one and only p2p.
All software that you need for the cyberspace of your dreams lies around you, you just have to “pick” it up and make it to work together. We have chosen open standards and open source, because we think that real success of cyberspace will depend mainly on number of users and developers. Open standard is the only guarantee to user and system integrator that they can choose best implementation, and open source is the only guarantee that another developer can take over development.

Number of open-source developers on SourceForge at this moment reach number of 500.000, and everything they develop, you can install on many computers as you wish, make as many copies as you wish and give them to your friends or distribute it with some computer magazine - freely (not only that it is free, but you also have the right to distribute it to anyone you want until you give it for free):
Society needs information that is truly available to its citizens---for example, programs that people can read, fix, adapt, and improve, not just operate. But what software owners typically deliver is a black box that we can't study or change. Society also needs freedom. When a program has an owner, the users lose freedom to control part of their own lives.

And above all society needs to encourage the spirit of voluntary cooperation in its citizens. When software owners tell us that helping our neighbours in a natural way is “piracy'', they pollute our society's civic spirit. This is why we say that free software is a matter of freedom, not price.

(Why Software Should Not Have Owners by Richard Stallman, Free Software Foundation, http://www.fsf.org/philosophy/why-free.html)
But regardless of our estimation, users will make a choice, and the main purpose of this paper is to give notice to users and developers that all the necessary technology already exists.

Short VR Glossary

· Avatar - representation of real person in virtual world (W. Gibson, Web 3D consortium)

· BotMaster - person who teach/maintain robot (ALICE foundation)

· Citizen - simuloid that represents real person (T. Williams)

· Client - a hardware/software system serving a single user (Web 3D consortium, Living Worlds)

· Console - computer that all data gets from net (W. Gibson)

· Costruct - robot reconstruction of real person (W. Gibson)

· Metaverse - virtual world (N. Stephenson)
· Net - virtual world (T. Williams)

· Pad - device for accessing and using Net (like PC today for Internet) (T. Williams)

· Puppet - simuloid that represents robot (T. Williams)

· Server - a system coordinating communication among clients (Web 3D consortium, Living Worlds)

· Simuloid - representation of human being in virtual world (T. Williams)

· User - someone operating a client in real time (Web 3D consortium, Living Worlds)

· Virtu - virtual world (R. Zelazny)

· Veritee - real (physical) world (R. Zelazny)
Internet resources and links:

· VRSpace homepage: http://www.vrspace.org
· Web 3D consortium: http://web3d.org
· Living Worlds: http://www.vrml.org/WorkingGroups/living-worlds
· SourceForge: http://www.sourceforge.org
· Java: http://java.sun.com
· ALICE: http://www.alicebot.org
· NeuroGrid: http://www.neurogrid.net
· JXTA: http://www.jxta.org
· JPos: http://www.jpos.org
· JBoss: http://www.jboss.org
· James: http://jakarta.apache.org/james
